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0[ Introduction

Although the Soret e}ect induces only small chemical
separations\ its in~uence on the variations of physical
parameters may be larger than the in~uence of the ther!
mal gradient from which it results[ The e}ect has been
recognized and extensively studied in the RayleighÐ
Be�nard problem for instabilities generated by density
~uctuations ð0Ð3Ł[ In the same way that for the mixture
density\ the Soret e}ect may in~uence signi_cantly the
surface tension variations in the presence of a tem!
perature gradient[ The interaction between ther!
mocapillary and concentration!capillary mechanisms for
promoting motion in binary mixture ~uids has motivated
many authors to study the MarangoniÐBe�nard instability
in the presence of the Soret e}ect and important simi!
larities with the RayleighÐBe�nard convection have been
evidenced ð4Ł[

In this paper we aim to study the in~uence of the
nonlinear Soret e}ect on the stationary MarangoniÐ
Be�nard stability conditions in a binary mixture layer with
a ~at free surface[ The reason for our analysis is the
recently recognized important e}ect of the nonlinear
Soret di}usion on morphological stability ð5Ł[

From the non!equilibrium thermodynamics ð6Ł\ the
~ux of solute in the presence of concentration and tem!
perature gradients can be written as

JC � −rDc "9c¦S½ T9T#\ "0#

where c is the concentration of one component of the
mixture\ T the temperature\ r the mixture mass density\
Dc the isothermal di}usion coe.cient[ The parameter S½ T

� Corresponding author[

is a coe.cient that quanti_es the Soret e}ect[ For the
latter several expressions are used in the literature[ The
most used assumption is that S½ T does not depend on
concentration and this corresponds to linear Soret e}ect[
For dilute solutions however the thermodi}usive con!
tribution to the mass ~ux is usually considered to be
proportional to the concentration[ This dependence is
observed also in concentrated mixtures where signi_cant
variations with composition of the Soret e}ect are
observed in the measurements\ including a sign change
at intermediate concentrations ð4Ł[

To face most situations that can be encountered in
metallic and semi!conductor melts as well as in organic
liquid solutions\ the term S½ T should be considered as a
function of c[ In terms of the thermodynamics of irre!
versible processes\ the dependence of the thermodi}usion
~ux on the concentration makes expression "0# nonlinear[
To investigate the possible e}ects of such a nonlinear
dependence\ here it is assumed\ after ð5Ł\ S½ T to be approxi!
mated by

S½ T � ST"b9¦b0c#\ "1#

where ST � DT:Dc is the Soret coe.cient\ DT is the ther!
modi}usion coe.cient\ and b9 and b0 are constant[ The
usual linear approximation of the total solute ~ux in a
mixture of mean concentration c9 is recovered by putting
b9 � c9"0−c9# and b0 � 9 into "1# and "0#[ For dilute
solutions\ b9 � 9 and b0 � 0[ In the present study the
coe.cient b9 is taken to be positive and b0 assumes both
signs[ The Soret coe.cient may have either positive or
negative values[

Neglecting the small contribution of the Dufour e}ect
ð6Ł\ the traditional Fourier law JQ � −k9T holds for the
heat ~ux\ k being thermal conductivity[ When a binary
~uid layer bounded by a rigid wall and a free surface with
a non!uniform surface tension is subjected to a constant
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temperature gradient across it\ an equilibrium solute con!
centration gradient will be established[ By increasing
gradually the temperature di}erence between the layer
boundaries\ the equilibrium state will breakdown at some
critical value of the temperature gradient and convective
motion will start[ If the mixture density is approximately
constant\ which holds for some dilute solutions\ or if the
layer is under reduced gravity\ the mechanism of onset
of convection is that of Marangoni instability related to
the dependence of the surface tension s on the tem!
perature and the solute concentration[

s"T\ c# � s9−aT"T−T9#¦ac "c−c9#^

aT � 0−
1s

1T19

\ ac � 0
1s

1c19

\ "2#

where s9\ T9 and c9 are some reference values[ The con!
stants aT and ac are the rates of change of the surface
tension with temperature and concentration[ If the solute
is a surfactant\ ac is positive[ As for aT\ it is usually
positive\ but in some systems may be negative on a small
range of composition[

In the present paper the linear stability analysis of a
binary mixture liquid layer bounded by rigid and free
surfaces is performed in the case of nonlinear Soret e}ect[

1[ Formulation of the problem

The system under consideration is a thin layer of a
binary mixture liquid placed on a horizontal rigid plate
and subjected to a constant vertical temperature gradient[
The liquid is in contact with the ambient gas phase of
constant temperature Ta[ On the ~at free surface\ the
surface tension is given by "2# and Newton|s cooling law
with a liquidÐgas heat transfer coe.cients h is assumed\
i[e[

−k
1T
1z

� h"T−Ta#[ "3#

The bottom wall is kept at constant temperature Tw[ The
mixture density is assumed constant and the buoyancy
e}ect is neglected in comparison with the surface tension!
driven one[ All the mixture|s transport properties\ except
the Soret di}usion parameter S½ T\ are considered constant[
Both boundaries of the layer are impermeable for each
mixture|s component[

In the unperturbed steady state\ the temperature and
concentration distributions are "b0 � 9#

Tst "z# � Tw−bz\

cst "z# � cw¦0
b9

b0

¦cw1 ð exp"STbb0z#−0Ł[ "4#

Here z is the coordinate measured from the plate upward\
b is the constant adverse temperature gradient\ being
positive "negative# for heating from below "above#\ and

cw is the solute concentration at the layer|s bottom[ The
latter value cannot be considered as prescribed because
it results from the simultaneous heat and mass transport
processes[ It is de_ned through the mean solute con!
centration across the layer\

0
d g

d

9

cst "z# dz\

where d is the layer depth[
Let us de_ne the parameter S0 0 STbb0d\ which is the

non linear contribution of the Soret e}ect[ For positive
S0\ the concentration cst"z# increases with z and the con!
centration gradient is positive\ while for negative values
of S0\ the concentration decreases with increasing z and
the gradient is negative[ It is important to note that the
concentration gradient on the interface depends also on
this parameter[

If b0 × 9\ the product STb has the same sign as the
parameter S0[ Hence\ the concentration gradient
increases from the lower boundary to the upper one in
mixtures with positive Soret coe.cient when the layer is
heated from below "b × 9# or in mixtures with negative
Soret coe.cient if the heating is from above "b ³ 9#[
Di}erent signs of ST and b results in negative values of
S0\ and then\ the concentration gradient across the layer
is negative either for heating from below if ST ³ 9 or for
heating from above when ST × 9[

For concentrated solutions with reversal in the sign of
Soret e}ect\ b0 may easily be as large as 209[ For values
of ST ranging usually between 209−1 and 209−2 K−0\
and temperature gradients ranging from 0 K:cm " for
metallic melts# to 099 K:cm "in thin layers of organic
solutions#\ one must consider values of S0 between 29[0
to 209 to face all practical and experimental situations[

Because the concentration gradient across the layer is
not constant\ as in the case of linear Soret e}ect\ we
introduce the following quantity

cs �
0
1s

1c19

"9cst#z�9

0
1s

1T19

"9Tst#z�9

�
ac "9cst#z�9

aTb
� ST

ac "b9¦b0cw#
aT

\

"5#
named as {Marangoni separation factor|[ It is a physical
parameter characterizing the properties of the binary
mixture[ The Marangoni separation factor is expressed
below by the ratio of the thermal and solutal Marangoni
numbers[ For some dilute organic solutions\ for example\
ac:aT is about 091 K and for the typical range of the Soret
coe.cient mentioned above\ the separation factor varies
from about 29[0 to 20[

2[ Solution of the problem

The linear stability problem is solved in usual manner[
The solution of the perturbed equations of continuity\
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momentum\ energy and solute di}usion is searched in
normal modes\namely

ðw?\ T?\ c?# � ðW"z#\ u"z#\ C"z#Ł exp ðvt¦i"ax¦ay#Ł\ "6#

where t is the time\ w? is the normal velocity\ T? and
c? are the temperature and concentration perturbations[
W"z#\ u"z# and C"z# are unknown amplitudes\ v is the
frequency\ ax × 9 and ay × 9 are the wave numbers in x!
and y!directions\ parallel to the plate[ This leads to the
following set of equations written in dimensionless form

$
v

Pr
−"D1−a1#%"D1−a1#W � 9\

ðv−"D1−a1#Łu � W\

$
v

Le
−"D1−a1#¦S0D%C

� S exp"S0z# $−
0
Le

W¦"D1−a1¦S0D#u%[ "7#

Here D 0 d: dz stands for di}erentiation with respect to
z\ Pr 0 m:rx is the Prandtl number\ Le 0 Dc:x is the
Lewis number\ m being the dynamic viscosity\ x the ther!

mal di}usivity and a 0 za1
x¦a1

y [ Length\ time\ velocity\
temperature and concentration have been scaled by the
quantities d\ d1:x\ x:d\ bd and cw respectively[ The quan!
tity S � S0¦S9 is related to b0 through S0 and to b9

through S9 0 STbb9d:cw[ Later it is shown that S is not
important parameter in this study[

The boundary conditions to equations "7# are

z � 9 6
W � 9\ DW � 9\ u � 9\

"D−S0#C � SDu^
"8#

z � 0

F

G

j

J

G

f

W � 9\

D1W � MaTa1u¦LeMaca
1C\

"D¦Bi#u � 9\

"D−S0#C � −S exp"S0#Du\

"09#

where the thermal Marangoni number MaT 0
"aTbd1#:mx#\ the solutal Marangoni number
Mac 0"accwd:"mDc# and the Biot number Bi 0 hd:k are
introduced[ The _rst condition "09# expresses the non!
deformability of the upper free boundary of the layer and
the second one follows from the balance of the tangential
forces on it[

Although the coupling of temperature and con!
centration ~uctuations by the Soret e}ect is recognized to
yield oscillatory convection in some cases\ in the present
paper we restrict ourselves to the case of stationary con!
vection\ when v � 9\ and left the overstability for future
study[ For stationary instability\ the Prandtl number is
not important but the Lewis number\ due to the nonlinear
Soret e}ect\ in~uences it[

Equations "7# with homogeneous boundary conditions
"8# and "09# are solved analytically in terms of exponent!

ial function[ The solution of this eigenvalue problem
yields a relationship between the parameters and the wave
number\ written in the form

MaT � F9"a^ Bi#¦MacSF"a^ S0\ Bi\ Le#\ "00#

where

F9"a^ Bi# �
7a"sinh a cosh a−a#"a cosh a¦Bi sinh a#

sinh2a−a2 cosh a
\

"01#

F"a^S0\Bi\Le# �
exp"S0#

S1
0

×6−S1
0 Le¦F9"a^Bi#¦

3"a cosha¦Bi sinha#

sinh2a−a2 cosh a

×$
1"l0−l1# sinha
"expl1−expl0#

ð−a¦cosh a"exp l0¦expl1#Ł¦a1%7
"02#

l0 �
S0

1
¦X0

S0

1 1
1

¦S1\

l1 �
S0

1
−X0

S0

1 1
1

¦a1[ "03#

Expression "00# contains\ in particular\ Pearson|s solu!
tion ð7Ł for thermocapillary instability of a layer of a pure
liquid when the mass ~ux is absent "Mac � 9#[ Tak!
ashima|s result ð8Ł\ corresponding to the case of linear
Soret e}ect\ is recovered for very small\ but non!zero\
value of S0[

3[ Discussion of the results

For given binary ~uid\ both thermal and solutal Mar!
angoni numbers cannot be treated as independent par!
ameters because the temperature gradient imposed
induces a corresponding concentration distribution
across the layer[ But\ the ratio of those numbers\ namely
the Marangoni separation factor\ is usually considered
as independent of the thermal condition[ The third
important parameter S0 introduced in this study\ cannot
be assumed independent of the thermal Marangoni num!
ber because b participates in their de_nitions[ Never!
theless\ considering the parametric analysis as an explo!
ration of possible situations\ we study below the behavior
of MaT varying the separation factor and S0 inde!
pendently of each other[

By introducing the separation factor "5#\ written as
cs 0 SMac:MaT\ into "00#\ the thermal Marangoni num!
ber is represented by

MaT �
F9"a^ Bi#

0−csF"a^ S0\ Bi\ Le#
[ "04#

The stability results are applied to organic solutions in
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contact with air\ for Bi � 9[0 and Le � 09−1[ Typical
"absolute# values of the separation factor are of order of
unity[

Figures 0 and 1 represent neutral stability curves\ cal!
culated from "04#\ for cs � 0 and cs � −0\ respectively\
and various values of S0 between −1 and ¦1[ This range
is su.cient to show the in~uence of S0 on the stability of
thin layers of liquid mixture[ It is well known that positive
values of cs correspond to a physical situation where
both thermal and solutal con_gurations tend to de!
stabilize the layer[ The behavior of the curves shown in
Fig[ 0\ is the same as in the case of the linear Soret e}ect
"S0 : 9#[ Moreover\ the minimum value of MaT decreases
when S0 is increased[ This tendency is also seen in Fig[
2 representing the critical thermal Marangoni number\
MaT\min and the critical wavenumber\ amin\ as functions
of S0 for various positive values of the separation factor[
The decrease of the critical wavenumber corresponds
more and more to the case of pure solutal instability]
because of impervious boundary conditions\ it tends
towards zero[

Fig[ 0[ Neutral stability curves for cs � 0[9\ Bi � 9[0\ Le � 9[90
and various values of S0[

Fig[ 1[ Neutral stability curves for cs � 0[9\ Bi � 9[0\ Le � 9[90
and various values of S0[

Fig[ 2[ Critical thermal Marangoni and wave numbers vs S0 for
Bi � 9[0\ Le � 9[90 and positive values of cs[

The situation for negative values of cs\ shown in Fig[
1\ is more complex\ because both positive and negative
thermal Marangoni numbers may lead to steady con!
vective instability as it is already found in the case of
linear Soret e}ect[ When MaT is negative\ instability sets
in with a wavenumber of zero\ and no qualitative modi!
_cation of the neutral stability curves is observed when
the nonlinear Soret e}ect is taken into account\ although
signi_cantly di}erent amplitudes are obtained by varying
the parameter S0[

When MaT is positive\ the nonlinear Soret e}ect com!
petes with thermal destabilization\ and the critical ther!
mal Marangoni number as well as the critical wav!
enumber increases with S0[ In Fig[ 3 they are plotted
against S0 for di}erent values of the separation factor[
At _xed cs\ denoted by c�s\ both curves tend to in_nity
when S0 approaches some value S�0\ given by the
expression

Fig[ 3[ Critical thermal Marangoni and wave numbers vs S0 for
Bi � 9[0\ Le � 9[90 and negative values of cs[
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S�0 � ln $
−0

"0¦Le#c�s%[ "05#

One may conclude that for S0 − S�0 the binary mixture
is always stable to small stationary disturbances[ For
Le � 9[90\ for instance\ the value of S�0 increases from
−9[692 to 1[182 when c�s varies between −1[9 and −9[0\
becoming zero at c�s ¹ −9[87[ Hence\ in the case of heat!
ing from below\ layers of binary mixtures with the sep!
aration factor cs ¾ −9[87 and positive\ even small\
values of the parameter S0 will be unconditionally stable
to stationary disturbances[

The critical thermal Marangoni number as a function
of the separation factor is shown in Fig[ 4 for di}erent
values of S0[ For positive MaT\ the curves for negative ss

are continuation of those for cs × 9[ The increase of MaT

when cs becomes more negative\ is very fast\ and the
curves have a vertical asymptote cs � c�s[ Negative
values of S0 increase this domain and decrease the critical
MaT\ so that\ stabilized steady convection is more likely
to appear with negative nonlinear Soret e}ect[ It is known
however that when stabilization by the Soret e}ect is
large\ oscillatory instability should occur for values of
=cs= larger than =c�s =\ with a frequency of oscillation
increasing with =cs=[ That case of overstability will be
considered in another paper[

Fig[ 4[ Critical thermal Marangoni numbers vs cs for Bi � 9[0\
Le � 9[90 and various values of S0[

The zero wavenumber instability appearing at negative
thermal Marangoni number\ on all the range of negative
values of cs\ is preserved when the nonlinear Soret e}ect
is considered\ because the instability is purely of solutal
origin[ However\ as is seen from the behavior of the
curves of MaT\max shown in Fig[ 4\ convective instability
is now promoted by positive values of the nonlinear Soret
e}ect parameter[
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